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Figure 9. Convergence towards the optimum suction distribution and the growth rate

for the swept Hiemenz flow. _R = 500, Q=.001, N=8.
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Figure 11. Optimum suction distribution and the N-factor for the swept

Hiemenz flow for stationary disturbances. _R = 500, N=10.
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Abstract

The optimum suction distribution which gives the longest laminar region for a given

total suction is computed. The goal here is to provide the designer with a method to

find the best suction distribution subject to some overall constraint applied to the suction.

We formulate the problem using the Lagrangian multiplier method with constraints. The

resulting non-linear system of equations is solved using the Newton-Raphson technique.

The computations are performed for a Blasius boundary layer on a fiat-plate and crossflow

cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream

of the maximum growth rate region and remains fiat in the middle before it decreases

to zero at the end of the transition point. For the stationary and travelling crossflow

instability, the optimum suction peaks upstream of the maximum growth rate region and

decreases gradually to zero.
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1. Introduction

There exists several methods to control the laminar boundary layers, e.g. suction,

cooling the wall, modifying the shape, artificial blowing etc. The main purposes of these

controls are to: (1) avoid the laminar separation and/or (2) delay or prevent the transition

from laminar to turbulent flow in the laminar boundary layers and hence reduce the drag

force and/or increase the lift. In this paper we are concerned with the use of suction to

control transition in laminar boundary layers.

The effects of suction on a laminar boundary layer are to reduce the thickness of the

boundary layer and to make the boundary layer becomes fuller near the wall. Since the

viscous instability is directly related to the second derivative of the streamwise velocity at

the wall the boundary layers with suction becomes more stable than that without suction.

In flows with adverse pressure gradients the suction removes or weakens the inflection

in the velocity profile and hence inhibits the inviscid instability.

In theory with enough amount of suction, it is possible to completely prevent the

transition from laminar to turbulent flow. However, increasing the amount of suction has

two adverse consequences. Firstly to apply a large amount of suction one needs to drive

a big pump and hence the saving in drag due to suction will be offset by the energy

needed for the pump. Secondly, when the suction is applied the boundary layer becomes

thin and hence the skin friction increases. It is therefore important to keep the amount of

suction required to a minimum. The questions to ask are what is the minimum amount of

suction required to satisfy a design requirement ar/d what is the best suction distribution?

In this work we investigate these questions.

The use of suction as a feasible and effective method to control laminar boundary

layers existed from the era of Prandtl. Pfenninger (1977) summarizes the research work

done at Northrop about using suction to control transition in laminar boundary layers.

It has been verified theoretically and experimentally that the boundary layer suction

prevents laminar separation and transition in flows with any pressure rise at high Reynolds

numbers. Reed and Nayfeh (1986) investigated the effects of different suction strip

configurations on the stability using linear triple-deck theory and influence coefficient

method. The change in the integrated growth rate at a fixed location is obtained as a

linear combination of suction strip velocities. The optimum location of the suction strip

is determined by the point where the multiplying constant takes the maximum value.
Their numerical results showed that the coefficient becomes maximum near the branch 1

and branch 2 neutral points and near the former being larger. This showed that suction

is more effective when placed near the branch 1 neutral point. In a companion paper

Reynolds and Saric (1986) investigated experimentally the effect of different suction strip

configuration on the amplification of the disturbances. They used two suction panels each

consists of 15 suction strips. Their experimental findings also agreed with the theoretical

results that the suction be concentrated near the neutral point region to obtain the largest

reduction in the integrated growth.



The state of the art transition prediction method that is used in the design is the
empirical eTM method. The numerical procedure to locate the transition onset involves

two steps. The first step is to compute the mean flow for a given suction distribution,

and the second step is to locate the transition onset using the linear stability and the
e N method.

To find the optimum suction distribution, trial and error procedures are commonly

used. In those methods, a few different suction distributions are tried, and the distribution

which gives the furthest transition onset is selected as the design suction distribution. In

this work, we develop a method based on the Lagrangian multipliers technique, to find

the optimum suction distribution for a given suction constraint which is dictated by the

designer.

2. Formulation

We are concerned with finding the optimum suction distribution to stabilize a laminar

boundary layer as much as possible within some ovearall constraint on the amount of

suction to be used. The wall suction basically modifies the mean velocity profiles inside

the boundary layer, and these changes in the mean flow profiles influence the stability

characteristics of the boundary layer. The transition from laminar to turbulence in a low

disturbance environment is directly related to the stability characteristics of the boundary

layer profiles. Hence the transition point is connected to the suction through the stability

and the mean flow profiles. Thus the analysis to control and/or predict the transition onset

point involves the following three steps and we describe them each in the subsequent
sections:

1. Mean flow calculations

2. Stability computations

3. Finding the optimum solution.

2.1 Meanltow

In this work we compute the mean boundary layer profiles by solving the boundary

layer equations. The analysis is in fact not at all dependent on the nature of the basic

boundary layer flow. Let x be the coordinate in the axial direction, y be the coordinate

in the direction normal to the surface, and z be the co-ordinate in the spanwise direction.

The boundary layer equations for an incompressible three-dimensional flow are

OU Ov

i)---_+ i)y O, (1)

roy vov _ v dvo ow
Ox + Oy - _ + u Oy-----i-,

U OW V OW 02W
Ox + _ = u Oy----T,

(2)



The boundary conditions are

U=0, V=Vo(x), W=0 at y=0, (3)

and U_U_, W--_W_ at y_¢c..

Here Ue(x), We are the free-stream velocities in the streamwise and spanwise directions

and Vo(X) is the suction velocity at the wall.

2.2 Stability

The growth of a disturbance is calculated by solving the linear parallel stability equa-

tions (Drazin & Reid 1981). Here we discuss the stability equations for an incompressible

flow. In the quasi-parallel linear stability theory, the disturbance quantities are written in

normal mode form. If q(x,y,z) is a disturbance flow variable, in normal mode analysis,

we write

i f adx + iflz - wt
q(x,y,z) = q(y) e (4)

Here a,/3 are the axial and spanwise wave numbers, w is the frequency, and q(y)

is the eigenfunction. We substitute this expression into the linearized Navier-Stokes

equations and, assuming the flow is parallel in the streamwise direction, we obtain an

ordinary differential equation for q(y). This equation, along with the homogeneous

boundary conditions at the wall and in the free-stream, forms the eigenvalue problem for

the wavenumber a and for the eigenfunction q(y). The three-dimensional linear stability

equations for an incompressible flow are

dv
-- = -i a u - i/3w,
dy

/3W - w)Re + a 2 +/32}u + Re dU
d---_v + iaRep,

dp 1 iaOu i/30w
dy Re Oy Re Oy

d2 w

dy 2

[i(o_u + _w-_)

- {i(.u + Zw- )n + + + iZp

+ Redd_v.

The boundary conditions are

u--O, v--O, w=O at y=O,

(5)

(6)



and u -+ 0, w --+ 0 at y --_ oo. Here u, v, w are the velocities in the axial, normal

and spanwise directions and p is pressure, o_ is a complex wavenumber

o_ = o_r+ iai, (7)

and (-oLi) measures the growth of the disturbances in the axial direction. We note for

our control problem that the suction Vo only enters in the stability problem through the

mean flow profiles U and W.

2.3 Transition Prediction

The state of the art transition prediction method that is used in the design is the

empirical #v method (Smith 1956, Van Ingen 1956) and here we use this method to

locate the transition onset point xr. In this method, the transition point is defined when

the integrated growth rate reaches a prescribed value No.

_T_(x)dx = No. (8)
N

Here (7 is the growth rate, XN is the neutral point where (7(xlv) = 0 and xr is the

transition onset point.

2.4 Control and Optimum Suction Distribution

Any control strategy to stabilize the boundary layer must reduce o- and hence increase

the laminar region or in other words maximize xT. Therefore the problem is to maximize

xT for a given constraint on the suction. Let us assume that the suction distribution

Vo(x) is constrained by

Xmax

/ Vo2(x)dx = Q.
(9)

Xmin

Here we assume Vo(x) = 0 for x _ Xmi n. In our calculations we take Xmin < ZN

and xma_ is much larger than XT. Here we have chosen to constrain the suction based

on a measure of the work done to supply the suction rather than simply on Vo(x) itself.

This prevents the somewhat absurd distributions generated in the latter case where for

example large amount of suction in potentially unstable regions are balanced by equally

large amounts of blowing in the more stable regions. The control problem is then reduced

to maximizing

_? = x_,, (10)
2

with the following constraints

Xmax

f Vo2dx=Q,

Xmin

(11)



and XT is defined by,

XT

cr dx = No. (12)

XN

To simplify the computations, we reduced the continuous problem in Vo(x) to a discrete

one by expanding Vo(x) in terms of an appropriate set of functions. Thus we write

N

Vo(x)=_anr.(x) (13)
1

and for a given N we find {an} which maximizes XT subject to the constrains (11-12).

o Solution Procedure

The optimum suction distributions are found using the Lagrangian multiplier tech-

nique. Thus we write

F = x_ + 5 _ dx - No +,5 dx - Q
2 (14)

_kXN _kXmin

-- F(XT, _, ¢5, ai, w, fl).

Here A, 5 are Lagrangian multipliers and co,/3 are the frequency and spanwise wavenum-

ber. By differentiating F respect to each variables we obtain the following Euler-Lagrange

equations.
XT + ,'_ _r (XT, ai, co, r) -- 0,

*_'_(a_,co,5,.) dx - No = O,
N

_mo_ V 2dx-o=O,
rnin

XT Xmax

I f O(T OVo2dx_x + _ f -NTa_
XN Xrnin

=o {i= 1,N}, (15)

XT

f Oo-d--_dx = O,
_"N

XT

XN



We note that by including the last two conditions we find the optimum solution in the

whole/3, w plane. If we want to find the solution for a fixed quantity of/3, or w, we

remove the appropriate equations from the set eq.(15). In our calculations, we considered

two different functions for Fn(x), one is a polynomial and the other is a harmonic (sine)
function. Thus we have either

N

X--" a.X i+sv_( : ' ,
i=1

(16)

or

N

= E ai sin iTrX,
i=1

where S is an integer which determines the shape of the suction distribution at the

initial point Xxmin and X -- x--xm,, .To solve the system, we treat the (ai,/3, _) as our
Xmax--Xmin

independent variables and rewrite the equations as

N N
L

k=l l=1

- Qo -- o_

f i = aj &r

j=l j+2S+2 i
XN

aj 0(7

j=l i+j-_-2S+l O--al =0'
XN

(17)

0(7fN+l = _--_d/3: O,

XN

XT

fourfu+2 = -ssd = O.
XN

Therefore we have (N+2) equations for the (N+2) variables {ai i ---- 1, N}, /3, and w.

Since this is a nonlinear system it has to be solved iteratively and we used Newton

6



linearization procedure which requires the Jacobian of {fi} with respect to the variables

{ai}, /3, and a3. For example,

= j + _ + 2 O_Oakdx
j=l XN

Oxz Oo- OXN Oo- }Oak "_aai(XT) -- "Oak Oai (x N)

gg.T

1 / Oa_+2s+2 -_a_dx
XN

dx
i + y j--2s + 1 Oa--2hak

j=l

(18)

Oxr Oo-
-_ Oak Oal (xT)

Ox_v00-(x_v)_ _
Oak Oal J

XT

1 f 00-i + k + 2S + l "_al dx"
xiv

for i = 2, N.

Similarly for other fi. We observe that to evaluate {fi } and the Jacobian we need the

quantities
00- 020 -

Oai Oai Oaj

00- 020-

0/3 0/30ai

OcT OZo-

02O -
(19)

Ow OwOai

OXT OXT OXT

Oai Ow 0/3
OXN OXN OZN

Oai Oco 0/3

(20)



Amongst thesequantities the last two rows can be obtained from the relationships

TT

0_ dx
foal

OXT _

Oai _,(XT)

_o"

OX N Oa-'-'_

Oai 0__%
OxN

(21)

and similar forms may be found for the other four quantities in the last two rows. The

quantities in the first three rows are obtained by differentiating the stability equations.
&r

For example _a/ is obtained from the solution of the system

L{¢i} - ai ql q- q2. (22)

where L is the linear operator eq. (5), ¢ is the flow variable {u,v,w,p T }

ql = ql{¢}, q2--q2{¢,Ui,Wi} and subscript/ denotes differentiation respect to ai.
Oa

can be computed using the adjoint method. We see that this requires the knowledge

Oai dU

of the mean flow quantities _ etc. This is obtained again by differentiating the mean

flow equations.

OUi OVi
-- _ = 0, (23)
Ox + Oy

ou u ou r =
u _-g-; + Ox + v_-g--_y+ Ox " Oy---7'

ow u OW_ vOW v OW_ o_w_
u,-Syx+ -g2-x+ oy + = " oy--v-,

(24)

and

Ui = Wi = 0 at y = O, ec,

Vi = X i+_ at y = O.
(25)

All the equations are solved using the two-point fourth order compact scheme in the y

direction (Malik (1990)) together with a second order accurate method in x.



the suction distribution for the stationary and the travelling disturbances. As expected

the travelling disturbances are more unstable than the stationary disturbances. But the
maximum suction distribution occurs near the same location for both cases. For the

stationary disturbances, the most of the suction is distributed upstream of the maximum

amplification rate compared to that for the travelling disturbances. Table 1 shows the

variation of the Reynolds number at the transition point ReT, the most amplified non-

dimensional frequency and the most amplified spanwise wavenumber/_ with the suction

parameter Q.

Q
.0

.0001

.001

.01

Travelling Stationary

F

4.4325E-3

4.3881E-3

4.2940E-3

4.0310E-3

.2988

.3004

.3037

.3135

ReT

497

503

516

553

.3327

.3338

.3370

.3456

ReT

688

691

700

726

5. Conclusions

Optimum suction distribution for transition control is investigated using the La-

grangian multiplier technique with constraints. We imposed a suction constraint based

on a measure of the work done to supply the suction. The appropriate constraint should

be the real cost to install and operate the suction distribution. Here we basically as-

sumed that this is proportional to the integral of the square of the suction velocity. We

investigated the incompressible flow over a fiat plate, swept Hiemenz flow.

The converged results are obtained in 4-5 iterations cycles. For the incompressible

flow the optimum suction peaks upstream of the most unstable region and remains fiat

in the middle and becomes zero at the end of the transition. For the travelling and

crossflow type instability the suction peaks upstream of the most unstable region and

gradually becomes zero at the end.

Another observation was that with increasing suction parameter Q, the convergence

becomes slower with the polynomial expansion. The sine expansion converges faster but

we have to keep a large number of terms to remove the oscillations. However the overall

shape, the transition location, growth rate do not change with the increasing number of

terms. The amount of suction needed to control the crossflow instability is about two

orders of magnitude larger than that for the T-S wave. For example, we can delay the

transition on a flat plate by 20% with Q=.001, and the maximum suction velocity is

Vo _ 2 • 10 -5. For the stationary crossflow we delay the transition only by 6% with
Uoo --

" Vo
Q=.01 and the maximum suction velocity ls_-L-_ -- 7 • 10 -4.

11
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4. Results

4.1. Blasius flow

As a first case we compute the optimum suction distribution for the boundary layer

over a fiat plate at zero pressure gradient. For the details about the stability theory,

the reader is referred to the article by Mack (1984). In all the computations we assign

the non-dimensional quantity x,_i,, - 1. The Reynolds number at the non-dimensional

distance x - 1 is taken as 600 which is well upstream of the neutral point for the most

amplified frequency. The N-factor at the transition location is taken as No = 9.

The non-dimensional suction velocity and the growth rate cr are defined by

?o=Vo L
U_ ' (26)

* L_O" =--O_ i

where U_ is the free-stream velocity, L is the length scale and -(_* is the dimensional

imaginary part of the eigenvalue o_. Figure 1 shows the optimum suction distribution

and the corresponding growth rate cr for various suction parameter Q. The horizontal

axis shows the non-dimensional coordinate x and the right hand vertical axis shows the

suction velocity. In figure 2 we plotted the N-factor variation at the optimum suction

distribution and figure 3 illustrates the convergence history towards the optimum solution.

These results are obtained with the polynomial expansions for the V0 with 8 polynomials.

Our initial suction distribution "iteration 1" is concentrated beyond the transition

point. It is interesting to observe that within one iteration the suction is redistributed

beneath the unstable region up to the transition location xT, and beyond the transition

point the suction is approximately zero. The convergence becomes slower if we have

to optimize over the frequency and the spanwise wavenumber. Overall the converged

results are obtained within 4 to 5 iteration cycles.

From figures 1 and 2 it is seen that the suction distribution peaks upstream of the

maximum growth rate and remains fiat in the most unstable region and approaches zero

steeply near the transition point. The figures also show that in the maximum growth

region the suction becomes smaller than that in the less unstable region. The numerical

results of Reed and Nayfeh (1986) showed from their linear triple-deck theory and the

computations that the multiplying constant becomes maximum near the lower and upper

branch neutral points. If we used the constrint that the square of the total suction is

constant the suction distribution should peak near the lower and upper branch neutral

points which agrees with our computation.

Figure 4 shows the effect of changing the number of polynomials that we used to

represent the suction distribution. The results are presented for N=4, 6 and 8 and it is

seen that there is not much difference in the distribution between N-6 and 8. In figure 5

we compared the results that obtained with the polynomial and the sine series expansions

for the suction. For the sine series expansions we kept 8 and 12 terms. The suction



distribution obtained with the sine series expansion has some small oscillations, but the

oscillation decreases with increasing number of terms. However the growth rate, N-

factor, the transition point and the shape of the suction distribution do not differ between

the two representations.

Figure 6 shows the largest transition Reynolds number ReT and the corresponding

most amplified frequency F as a function of the control parameter Q. In essence this

figure depicts the longest transition region that is possible using the steady suction under

this constraint for the Blasius boundary layer. Similar graphs can be obtained for other

problems using this method.

4.2, Crossflow Instability

As a second example we performed the computations for three-dimensional boundary
The inviscidlayers. We considered flow over a swept wedge as the model problem.

velocity along the axial and the spanwise directions are

Ue = Cx m, (27)
W = Woo = const.

The details about the linear stability for this flow are given in Mack (1978) and Malik

et.al (1992). The Reynolds number at Xmin=l is

L

Reo - _-_ _ 80, (28)

and the Reynolds number based on the spanwise velocity is

L
Reo = Woo _ - 500. (29)

v/v/c

Figure 7 shows the optimum suction distribution and the corresponding growth rate _r for

various suction parameter Q for the travelling disturbances. In Figure 8 we plot the N-

factor variation at the optimum suction distribution and figure 9 shows the convergence

history. The transition point x-r is defined by N0=10. The conclusions are similar to

that of the Blasius boundary layer case. In the crossflow case most of the suction is

distributed near the maximum amplification region and in the two-dimensional case the

suction distribution is almost flat for most of the region.

For the travelling disturbances the optimization is done for the frequency and the

spanwise wavenumber and from the figure 9 we see that the converged results are

obtained in 4-5 iteration cycle.

Figures 10-12 show the results for the stationary disturbances. Figure 12 shows the

effect of changing the number of polynomials that we used to represent the suction

distribution. The results are presented for N=8 and 10. It is seen that the small

oscillations which appear in the distribution decreases with increasing N, but the shape

and the transition point do not change. In Figure 13, we compare the growth rate and

10
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Figure 7. Optimum suction distribution and the growth rate for the swept

Hiemenz flow for travelling disturbances. R = 500, N=8.
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